Learn R Programming

SimDesign (version 0.7)

MAE: Compute the mean absolute error

Description

Computes the average absolute deviation of a sample estimate from the parameter value. Accepts estimate and parameter values, as well as estimate values which are in deviation form.

Usage

MAE(estimate, parameter = NULL, type = "MAE")

Arguments

estimate
a numeric vector or matrix/data.frame of parameter estimates. If a vector, the length is equal to the number of replications. If a matrix/data.frame the number of rows must equal the number
parameter
a numeric scalar/vector indicating the fixed parameter values. If a single value is supplied and estimate is a matrix/data.frame then the value will be recycled for each column. If NULL, the
type
type of deviation to compute. Can be 'MAE' (default) for the mean absolute error, 'NMSE' for the normalized MAE (MAE / (max(estimate) - min(estimate))), or 'NMSE_SD' for the normalized MAE by the standard deviation (

Value

  • returns a numeric vector indicating the overall mean absolute error in the estimates

See Also

RMSE

Examples

Run this code
pop <- 1
samp <- rnorm(100, 1, sd = 0.5)
MAE(samp, pop)

dev <- samp - pop
MAE(dev)
MAE(samp, pop, type = 'NMAE')
MAE(samp, pop, type = 'NMAE_SD')

# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(mat, parameter = 2)

# same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(df, parameter = c(2,2))

Run the code above in your browser using DataLab