Computes the average deviation (root mean square error; also known as the root mean square deviation) of a sample estimate from the parameter value. Accepts estimate and parameter values, as well as estimate values which are in deviation form.
RMSE(
estimate,
parameter = NULL,
type = "RMSE",
MSE = FALSE,
percent = FALSE,
unname = FALSE
)RMSD(
estimate,
parameter = NULL,
type = "RMSE",
MSE = FALSE,
percent = FALSE,
unname = FALSE
)
a numeric
vector or matrix
/data.frame
of parameter estimates.
If a vector, the length is equal to the number of replications. If a
matrix
/data.frame
, the number of rows must equal the number of replications
a numeric
scalar/vector indicating the fixed parameter values.
If a single value is supplied and estimate
is a matrix
/data.frame
then
the value will be recycled for each column; otherwise, each element will be associated
with each respective column in the estimate
input.
If NULL
then it will be assumed that the estimate
input is in a deviation
form (therefore sqrt(mean(estimate^2))
will be returned)
type of deviation to compute. Can be 'RMSE'
(default) for the root mean square-error,
'NRMSE'
for the normalized RMSE (RMSE / (max(estimate) - min(estimate))),
'SRMSE'
for the standardized RMSE (RMSE / sd(estimate)),
'CV'
for the coefficient of variation, or 'RMSLE'
for the root mean-square log-error
logical; return the mean square error equivalent of the results instead of the root
mean-square error (in other words, the result is squared)? Default is FALSE
logical; change returned result to percentage by multiplying by 100? Default is FALSE
logical; apply unname
to the results to remove any variable
names?
returns a numeric
vector indicating the overall average deviation in the estimates
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
10.1080/10691898.2016.1246953
MAE
# NOT RUN {
pop <- 1
samp <- rnorm(100, 1, sd = 0.5)
RMSE(samp, pop)
dev <- samp - pop
RMSE(dev)
RMSE(samp, pop, type = 'NRMSE')
RMSE(dev, type = 'NRMSE')
RMSE(dev, pop, type = 'SRMSE')
RMSE(samp, pop, type = 'CV')
RMSE(samp, pop, type = 'RMSLE')
# percentage reported
RMSE(samp, pop, type = 'NRMSE')
RMSE(samp, pop, type = 'NRMSE', percent = TRUE)
# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
RMSE(mat, parameter = 2)
RMSE(mat, parameter = c(2, 3))
# different parameter associated with each column
mat <- cbind(M1=rnorm(1000, 2, sd = 0.25), M2 = rnorm(1000, 3, sd = .25))
RMSE(mat, parameter = c(2,3))
# same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
RMSE(df, parameter = c(2,2))
# parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
RMSE(estimates, parameters)
# }
Run the code above in your browser using DataLab