
Last chance! 50% off unlimited learning
Sale ends in
Robustness interval criteria for empirical detection rate estimates and
empirical coverage estimates defined by Bradley (1978).
See EDR
and ECR
to obtain such estimates.
Bradley1978(
rate,
alpha = 0.05,
type = "liberal",
CI = FALSE,
out.logical = FALSE,
out.labels = c("conservative", "robust", "liberal"),
unname = FALSE
)
(optional) numeric vector containing the empirical detection
rate(s) or empirical confidence interval estimates.
If supplied a character vector with elements defined in
out.labels
or a logical vector will be returned indicating whether the
detection rate estimate is considered 'robust'.
When the input is an empirical coverage rate the argument CI
must be
set to TRUE
.
If this input is missing, the interval criteria will be printed to the console
Type I error rate to evaluated (default is .05)
character vector indicating the type of interval classification to use. Default is 'liberal', however can be 'stringent' to use Bradley's more stringent robustness criteria
logical; should this robust interval be constructed on empirical detection
rates (FALSE
) or empirical coverage rates (TRUE
)?
logical; should the output vector be TRUE/FALSE indicating whether the supplied empirical detection rate/CI should be considered "robust"? Default is FALSE, in which case the out.labels elements are used instead
character vector of length three indicating the classification labels according to the desired robustness interval
logical; apply unname
to the results to remove any variable
names?
Phil Chalmers rphilip.chalmers@gmail.com
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31, 144-152.
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
tools:::Rd_expr_doi("10.20982/tqmp.16.4.p248")
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
tools:::Rd_expr_doi("10.1080/10691898.2016.1246953")
EDR
, ECR
, Serlin2000
# interval criteria used for empirical detection rates
Bradley1978()
Bradley1978(type = 'stringent')
Bradley1978(alpha = .01, type = 'stringent')
# intervals applied to empirical detection rate estimates
edr <- c(test1 = .05, test2 = .027, test3 = .051, test4 = .076, test5 = .024)
Bradley1978(edr)
Bradley1978(edr, out.logical=TRUE) # is robust?
#####
# interval criteria used for coverage estimates
Bradley1978(CI = TRUE)
Bradley1978(CI = TRUE, type = 'stringent')
Bradley1978(CI = TRUE, alpha = .01, type = 'stringent')
# intervals applied to empirical coverage rate estimates
ecr <- c(test1 = .950, test2 = .973, test3 = .949, test4 = .924, test5 = .976)
Bradley1978(ecr, CI=TRUE)
Bradley1978(ecr, CI=TRUE, out.logical=TRUE) # is robust?
Run the code above in your browser using DataLab