
Last chance! 50% off unlimited learning
Sale ends in
Computes the average absolute deviation of a sample estimate from the parameter value. Accepts estimate and parameter values, as well as estimate values which are in deviation form.
MAE(estimate, parameter = NULL, type = "MAE", percent = FALSE, unname = FALSE)
returns a numeric vector indicating the overall mean absolute error in the estimates
a numeric
vector, matrix
/data.frame
, or list
of parameter estimates.
If a vector, the length is equal to the number of replications. If a
matrix
/data.frame
the number of rows must equal the number of replications.
list
objects will be looped
over using the same rules after above after first translating the information into one-dimensional
vectors and re-creating the structure upon return
a numeric
scalar/vector or matrix
indicating the fixed parameter values.
If a single value is supplied and estimate
is a matrix
/data.frame
then the value will be
recycled for each column; otherwise, each element will be associated
with each respective column in the estimate
input.
If NULL
, then it will be assumed that the estimate
input is in a deviation
form (therefore mean(abs(estimate))
will be returned)
type of deviation to compute. Can be 'MAE'
(default) for the mean absolute error,
'NMSE'
for the normalized MAE (MAE / (max(estimate) - min(estimate))), or
'SMSE'
for the standardized MAE (MAE / sd(estimate))
logical; change returned result to percentage by multiplying by 100? Default is FALSE
logical; apply unname
to the results to remove any variable
names?
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
tools:::Rd_expr_doi("10.20982/tqmp.16.4.p248")
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
tools:::Rd_expr_doi("10.1080/10691898.2016.1246953")
RMSE
pop <- 1
samp <- rnorm(100, 1, sd = 0.5)
MAE(samp, pop)
dev <- samp - pop
MAE(dev)
MAE(samp, pop, type = 'NMAE')
MAE(samp, pop, type = 'SMAE')
# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(mat, parameter = 2)
# same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(df, parameter = c(2,2))
# parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
MAE(estimates, parameters)
Run the code above in your browser using DataLab