Computes the detection/rejection rate for determining empirical Type I error and power rates using information from p-values.
EDR(p, alpha = 0.05, unname = FALSE)
a numeric
vector or matrix
/data.frame
of p-values from the
desired statistical estimator. If a matrix
, each statistic must be organized by
column, where the number of rows is equal to the number of replications
the detection threshold (typical values are .10, .05, and .01). Default is .05
logical; apply unname
to the results to remove any variable
names?
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
tools:::Rd_expr_doi("10.20982/tqmp.16.4.p248")
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
tools:::Rd_expr_doi("10.1080/10691898.2016.1246953")
ECR
, Bradley1978
rates <- numeric(100)
for(i in 1:100){
dat <- rnorm(100)
rates[i] <- t.test(dat)$p.value
}
EDR(rates)
EDR(rates, alpha = .01)
# multiple rates at once
rates <- cbind(runif(1000), runif(1000))
EDR(rates)
Run the code above in your browser using DataLab