library(MASS)
n <- 100
p <- 50
# Example 1: iid data
set.seed(123)
data_iid <- mvrnorm(n = n, mu = rep(0, p) , Sigma = diag(p))
wise_test(
wise_sim(data_iid, measure = "distance", metric = "manhattan"),
dependence = "proximity",
alpha = 0.05
)
# Example 2: AR(1)
set.seed(123)
data_ar <- matrix(0, nrow = n, ncol = p)
error <- mvrnorm(n = n, mu = rep(0,p), Sigma = diag(p))
data_ar[1,] <- error[1,]
phi <- 0.1 * diag(p)
for (t in 2:n) {
data_ar[t, ] <- phi %*% data_ar[t - 1, ] + error[t,]
}
wise_test(
wise_sim(data_ar, measure = "distance", metric = "manhattan"),
dependence = "proximity",
alpha = 0.05
)
# Example 3: NMA(2)
set.seed(123)
data_nma <- matrix(0, nrow = n, ncol = p)
error <- mvrnorm(n = n, mu = rep(0,p), Sigma = diag(p))
data_nma[1:2, 1:p] <-error[1:2,1:p]
for (i in 3:n) {
data_nma[i, ] <- error[i,]*error[i-1,]*error[i-2,]
}
wise_test(
wise_sim(data_nma, measure = "distance", metric = "manhattan"),
dependence = "proximity",
alpha = 0.05
)
Run the code above in your browser using DataLab