"SimInf_pmcmc"Class "SimInf_pmcmc"
modelThe SimInf_model object to estimate parameters
in.
priorsA data.frame containing the four columns
parameter, distribution, p1 and
p2. The column parameter gives the name of the
parameter referred to in the model. The column
distribution contains the name of the prior
distribution. Valid distributions are 'gamma', 'normal' or
'uniform'. The column p1 is a numeric vector with the
first hyperparameter for each prior: 'gamma') shape,
'lognormal') logmean, 'normal') mean, and 'uniform') lower
bound. The column p2 is a numeric vector with the
second hyperparameter for each prior: 'gamma') rate,
'lognormal') standard deviation on the log scale, 'normal')
standard deviation, and 'uniform') upper bound.
targetCharacter vector (gdata or ldata) that
determines if the pmcmc method estimates parameters in
model@gdata or in model@ldata.
parsIndex to the parameters in target.
n_particlesAn integer with the number of particles (> 1) to use in the bootstrap particle filter.
dataA data.frame holding the time series data for
the observation process.
chainA matrix where each row contains logPost,
logLik, logPrior, accept, and the
parameters for each iteration.
covmatA named numeric (npars x npars) matrix with
covariances to use as initial proposal matrix.
adaptmixMixing proportion for adaptive proposal.
adaptiveControls when to start adaptive update.
pmcmc and continue_pmcmc.