Design <- assumptions_progression()
Design
one_simulation <- merge(
assumptions_progression(),
design_fixed_followup(),
by=NULL
) |>
tail(1) |>
generate_progression()
head(one_simulation)
tail(one_simulation)
my_design <- merge(
assumptions_progression(),
design_fixed_followup(),
by=NULL
)
my_design_os <- true_summary_statistics_progression(my_design, "os")
my_design_pfs <- true_summary_statistics_progression(my_design, "pfs")
my_design_os
my_design_pfs
my_design <- merge(
assumptions_progression(),
design_fixed_followup(),
by=NULL
)
my_design$prog_rate_ctrl <- NA_real_
my_design$prog_rate_trt <- NA_real_
my_design$prog_prop_trt <- 0.2
my_design$prog_prop_ctrl <- 0.3
my_design <- progression_rate_from_progression_prop(my_design)
my_design
design <- expand.grid(
hazard_ctrl = m2r(15), # hazard under control
hazard_trt = m2r(18), # hazard under treatment
hazard_after_prog = m2r(3), # hazard after progression
prog_rate_ctrl = m2r(12), # hazard for disease progression under control
prog_rate_trt = m2r(c(12,16,18)), # hazard for disease progression under treatment
censoring_prop = 0.1, # rate of random withdrawal
followup = 100, # follow up time
n_trt = 50, # patients in treatment arm
n_ctrl = 50 # patients in control arm
)
cen_rate_from_cen_prop_progression(design)
# \donttest{
my_design <- merge(
design_fixed_followup(),
assumptions_progression(),
by=NULL
)
my_design$hazard_trt <- NULL
my_design$final_events <- ceiling(0.75 * (my_design$n_trt + my_design$n_ctrl))
my_design <- hazard_before_progression_from_PH_effect_size(my_design, target_power_ph=0.7)
my_design
# }
Run the code above in your browser using DataLab