Learn R Programming

SixSigma (version 0.6.3)

ss.lfa: Loss Function Analysis

Description

This function perform a Quality Loss Function Analysis, based in the Taguchi Loss Function for "Nominal-the-Best" characteristics.

Usage

ss.lfa(lfa.data, lfa.ctq, lfa.Delta, lfa.Y0, lfa.L0, lfa.size = NA, 
	lfa.output = "both", lfa.sub = "Six Sigma Project")

Arguments

lfa.data
Data frame with the sample to get the average loss.
lfa.ctq
Name of the field in the data frame containing the data.
lfa.Delta
Tolerance of the process.
lfa.Y0
Target of the process (see note).
lfa.L0
Cost of poor quality at tolerance limit.
lfa.size
Size of the production, batch, etc. to calculate the total loss in a group (span, batch, period, ...)
lfa.output
Type of output (see details).
lfa.sub
Subtitle for the graphic output.

Value

  • lfa.kConstant k for the loss function
  • lfa,lfExpression with the loss function
  • lfa.MSDMean Squared Differences from the target
  • lfa.avLossAverage Loss per unit of the process
  • lfa.LossTotal Loss of the process (if a size is provided)

Details

lfa.output can take the values "text", "plot" or "both".

References

Taguchi G, Chowdhury S,Wu Y (2005) Taguchi's quality engineering handbook. John Wiley Cano, Emilio L., Moguerza, Javier M. and Redchuk, Andres. 2012. Six Sigma with {R}. Statistical Engineering for Process Improvement, Use R!, vol. 36. Springer, New York. http://www.springer.com/statistics/book/978-1-4614-3651-5.

See Also

ss.lf, ss.data.bolts.

Examples

Run this code
ss.lfa(ss.data.bolts, "diameter", 0.5, 10, 0.001, 
		lfa.sub="10 mm. Bolts Project", 
		lfa.size=100000, lfa.output="both")

Run the code above in your browser using DataLab