Learn R Programming

SixSigma (version 0.9-52)

smoothProfiles: Regularise set of profiles

Description

This function takes a set of profiles and regularise them by means of a SVM

Usage

smoothProfiles(profiles, x = 1:nrow(profiles), svm.c = NULL,
  svm.eps = NULL, svm.gamma = NULL, parsvm.unique = TRUE)

Arguments

profiles

Matrix of y values, one column per profile

x

Vector of predictive variable values, common to all profiles

svm.c

SVM parameter (cost)

svm.eps

SVM parameter (epsilon)

svm.gamma

SVM parameter (gamma)

parsvm.unique

Same parameters for all profiles? (logical [TRUE])

Value

Regularized profiles

References

Cano, E.L. and Moguerza, J.M. and Prieto Corcoba, M. (2015) Quality Control with R. An ISO Standards Approach. Springer.

Examples

Run this code
# NOT RUN {
wby.smooth <- smoothProfiles(profiles = ss.data.wby,
    x = ss.data.wbx)
plotProfiles(profiles = wby.smooth,
    x = ss.data.wbx)     
# }

Run the code above in your browser using DataLab