# NOT RUN {
str(case0601)
attach(case0601)
## EXPLORATION
myHandicap <- factor(Handicap,
levels=c("None","Amputee","Crutches","Hearing","Wheelchair"))
boxplot(Score ~ myHandicap,
ylab= "Qualification Score Assigned by Student to Interviewee",
xlab= "Treatment Group--Handicap Portrayed (14 Students in each Group)",
main= "Handicap Discrimination Experiment on 70 Undergraduate Students")
myAov <- aov(Score ~ myHandicap)
plot(myAov, which=1) # Plot residuals versus estimated means
summary(myAov)
## COMPARE MEAN QUALIFICATION SCORE OF EVERY HANDICAP GROUP TO "NONE"
if(require(multcomp)){ # Use the multcomp library
myDunnett <- glht(myAov, linfct = mcp(myHandicap = "Dunnett"))
summary(myDunnett)
confint(myDunnett,level=.95)
opar <- par(no.readonly=TRUE) # Save current graphics parameter settings
par(mar=c(4.1,8.1,4.1,1.1)) # Change margins
plot(myDunnett,
xlab="Difference in Mean Qualification Score (and Dunnet-adjusted CIs)")
par(opar) # Restore original graphics parameter settings
}
## COMPARE EVERY MEAN TO EVERY OTHER MEAN
if(require(multcomp)){ # Use the multcomp library
myTukey <- glht(myAov, linfct = mcp(myHandicap = "Tukey"))
summary(myTukey)
}
## TEST THE CONTRAST OF DISPLAY 6.4
myAov2 <- aov(Score ~ myHandicap - 1)
myContrast <- rbind(c(0, -1/2, 1/2, -1/2, 1/2))
if(require(multcomp)){ # Use the multcomp library
myComparison <- glht(myAov2, linfct=myContrast)
summary(myComparison, test=adjusted("none"))
confint(myComparison)
}
# BOXPLOTS FOR PRESENTATION
boxplot(Score ~ myHandicap,
ylab= "Qualification Score Assigned by Student to Video Job Applicant",
xlab="Handicap Portrayed by Job Applicant in Video (14 Students in each Group)",
main= "Handicap Discrimination Experiment on 70 Undergraduate Students",
col="green", boxlwd=2, medlwd=2, whisklty=1, whisklwd=2, staplewex=.2,
staplelwd=2, outlwd=2, outpch=21, outbg="green", outcex=1.5)
detach(case0601)
# }
Run the code above in your browser using DataLab