Calculate gene set expression and infer probabilities with control datasets (Use in package)
calculate_probability(
object,
features,
assay = NULL,
cluster_col = NULL,
min_expression = 0.1,
specificity_weight = 3
)
Average expression of genes in the input "Seurat" object given "cluster_col" and given "features".
Enter a Seurat object.
Enter one or a set of markers.
Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = NULL".
Enter the meta.data column in the Seurat object to be annotated, such as "seurat_cluster". Default parameters use "cluster_col = NULL".
The min_expression parameter defines a threshold value to determine whether a cell's expression of a feature is considered "expressed" or not. It is used to filter out low-expression cells that may contribute noise to the analysis. Default parameters use "min_expression = 0.1".
The specificity_weight parameter controls how much the expression variability (standard deviation) of a feature within a cluster contributes to its "specificity score." It amplifies or suppresses the impact of variability in the final score calculation.Default parameters use "specificity_weight = 3".
Other Use_in_packages:
calculate_expression()