
Last chance! 50% off unlimited learning
Sale ends in
The division in HT / NT is done from the input smart meter data
calc_featuresnt_consumption(
B,
rowname = NULL,
featsCoarserGranularity = FALSE,
replace_NA_with_defaults = TRUE
)
a vector with length 2*24*7 = 336 measurements in one day in seven days a week
the row name of the resulting feature vector
are the features of finer granularity levels also to be calculated (TRUE/FALSE)
an optional boolean argument specifying if missing values will be replaced with standard values (i.e., zero values)
Konstantin Hopf konstantin.hopf@uni-bamberg.de
HT consumption is during the time 07:00-22:00
Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. tools:::Rd_expr_doi("10.20378/irbo-54833")
Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014). Feature extraction and filtering for household classification based on smart electricity meter data. Computer Science-Research and Development, (31) 3, 141–148. tools:::Rd_expr_doi("10.1007/s00450-014-0294-4")
Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy efficiency in the residential sector with smart meter data analytics. Electronic Markets, 28(4). tools:::Rd_expr_doi("10.1007/s12525-018-0290-9")