Learn R Programming

SmartSifter (version 0.1.0)

Online Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms

Description

Addressing the problem of outlier detection from the viewpoint of statistical learning theory. This method is proposed by Yamanishi, K., Takeuchi, J., Williams, G. et al. (2004) . It learns the probabilistic model (using a finite mixture model) through an on-line unsupervised process. After each datum is input, a score will be given with a high one indicating a high possibility of being a statistical outlier.

Copy Link

Version

Install

install.packages('SmartSifter')

Monthly Downloads

4

Version

0.1.0

License

GPL (>= 2)

Maintainer

Lizhen Nie

Last Published

September 14th, 2016

Functions in SmartSifter (0.1.0)

delta

delta
InputOneSample

InputOneSample
Test

Test
LogLossOne

LogLossOne
LogLoss

LogLoss
InitializeCell

InitializeCell
Train

Train
HellingerScoreOne

HellingerScoreOne
InputSample

InputSample
HellingerScore

HellingerScore
WhichCell

WhichCell
UpdateConst

UpdateConst