library(lava)
library(prodlim)
set.seed(17)
d <- simulateIDM(100)
# right censored data
fitRC <- idm(formula01=Hist(time=observed.illtime,event=seen.ill)~X1+X2,
formula02=Hist(time=observed.lifetime,event=seen.exit)~X1+X2,
formula12=Hist(time=observed.lifetime,event=seen.exit)~X1+X2,data=d,
conf.int=FALSE)
fitRC
# \donttest{
set.seed(17)
d <- simulateIDM(300)
fitRC.splines <- idm(formula01=Hist(time=observed.illtime,event=seen.ill)~X1+X2,
formula02=Hist(time=observed.lifetime,event=seen.exit)~X1+X2,
formula12=Hist(time=observed.lifetime,event=seen.exit)~1,data=d,
conf.int=FALSE,method="splines")
# }
# interval censored data
fitIC <- idm(formula01=Hist(time=list(L,R),event=seen.ill)~X1+X2,
formula02=Hist(time=observed.lifetime,event=seen.exit)~X1+X2,
formula12=Hist(time=observed.lifetime,event=seen.exit)~X1+X2,data=d,
conf.int=FALSE)
fitIC
# \donttest{
data(Paq1000)
# Illness-death model with certif on the 3 transitions
# Weibull parametrization and likelihood maximization
fit.weib <- idm(formula02=Hist(time=t,event=death,entry=e)~certif,
formula01=Hist(time=list(l,r),event=dementia)~certif,
data=Paq1000)
# Illness-death model with certif on transitions 01 and 02
# Splines parametrization and penalized likelihood maximization
fit.splines <- idm(formula02=Hist(time=t,event=death,entry=e)~certif,
formula01=Hist(time=list(l,r),event=dementia)~certif,
formula12=~1,
method="Splines",
data=Paq1000)
fit.weib
summary(fit.splines)
# }
Run the code above in your browser using DataLab