Learn R Programming

SpacePAC (version 1.10.0)

SpacePAC-package: Identifying mutational clusters in 3D protein space using simulation.

Description

The SpacePAC package identifies non-random amino acid clusters in proteins in 3D space and is a sister package to iPAC and GraphPAC. SpacePAC considers 1, 2 or 3 non-overlapping spheres with radii specified by the user and through simulation, attempts to identify spheres where there are more mutations than expected by random chance alone. These results are then outputted in the form of a list with p-values.

Arguments

Details

Please see get.Positions and get.AlignedPositions in the iPAC package for information about obtaining positional data.

References

Gregory Ryslik and Hongyu Zhao (2012). iPAC: Identification of Protein Amino acid Clustering. R package version 1.1.3. http://www.bioconductor.org/.

Gregory Ryslik and Hongyu Zhao (2013). GraphPAC: Identification of Mutational Clusters in Proteins via a Graph Theoretical Approach. R Package version 1.0.0 http://www.bioconductor.org/.

Bioconductor: Open software development for computational biology and bioinformatics R. Gentleman, V. J. Carey, D. M. Bates, B.Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, and others 2004, Genome Biology, Vol. 5, R80

See Also

get.Positions SpaceClust

Examples

Run this code
## Not run: 
# CIF <- "http://www.pdb.org/pdb/files/3GFT.cif"
# Fasta <- "http://www.uniprot.org/uniprot/P01116-2.fasta"
# KRAS.Positions <- get.Positions(CIF, Fasta, "A")
# data(KRAS.Mutations)
# 
# #Calculate the required clusters
# SpaceClust(KRAS.Mutations, KRAS.Positions$Positions, radii.vector = c(1,2,3,4))
# 
# ## End(Not run)

Run the code above in your browser using DataLab