
Last chance! 50% off unlimited learning
Sale ends in
Get column types of a SparkDataFrame
Set the column types of a SparkDataFrame.
coltypes(x)coltypes(x) <- value
# S4 method for SparkDataFrame
coltypes(x)
# S4 method for SparkDataFrame,character
coltypes(x) <- value
A SparkDataFrame
A character vector with the target column types for the given SparkDataFrame. Column types can be one of integer, numeric/double, character, logical, or NA to keep that column as-is.
value A character vector with the column types of the given SparkDataFrame
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, except
,
explain
, filter
,
first
, gapplyCollect
,
gapply
, getNumPartitions
,
group_by
, head
,
hint
, histogram
,
insertInto
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
localCheckpoint
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, registerTempTable
,
rename
, repartition
,
rollup
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, summary
,
take
, toJSON
,
unionByName
, union
,
unpersist
, withColumn
,
withWatermark
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
# NOT RUN {
irisDF <- createDataFrame(iris)
coltypes(irisDF) # get column types
# }
# NOT RUN {
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
coltypes(df) <- c("character", "integer") # set column types
coltypes(df) <- c(NA, "numeric") # set column types
# }
Run the code above in your browser using DataLab