## Data generation from time series chain graphical model with vector
## autoregressive model of order 2
set.seed(321)
datas <- sim.data(model="ar2", time=10,n.obs=20, n.var=5,prob0=0.25,
network="scale-free")
data.fit <- datas$data1
## Model fitting with vector autoregressive order 2
res.tscgm <- sparse.tscgm(data=data.fit, lam1=NULL, lam2=NULL, nlambda=NULL,
model="ar2", optimality="bic_mod",control=list(maxit.out = 10, maxit.in = 100))
#Network visualization
par(mfrow=c(3,2))
#Graphical visualization
par(mfrow=c(3,2))
plot.tscgm.ar2(datas, mat="precision",main="True precision matrix")
plot.tscgm.ar2(res.tscgm, mat="precision",main="Estimated precision matrix")
plot.tscgm.ar2(datas, mat="autoregression1",
main="True autoregression coef. matrix of lag 1" )
plot.tscgm.ar2(res.tscgm, mat="autoregression1",
main="Estimated autoregression coef. matrix of lag 1")
plot.tscgm.ar2(datas, mat="autoregression2",
main="True autoregression coef. matrix of lag 2")
plot.tscgm.ar2(res.tscgm, mat="autoregression2",
main="Estimated autoregression coef. matrix of lag 2")
Run the code above in your browser using DataLab