Learn R Programming

SparseTSCGM (version 2.2)

sim.data: Multivariate time series simulation with chain graphical models

Description

Generates sparse vector autoregressive coefficients matrices and precision matrix from various network structures and using these matrices generates repeated multivariate time series dataset.

Usage

sim.data(model=c("ar1","ar2"),time=time,n.obs=n.obs, n.var=n.var,prob0=NULL, network=c("random","scale-free","hub","user_defined"), prec=NULL,gamma1=NULL,gamma2=NULL)

Arguments

model
Specifies the order of vector autoregressive models. Vector autoregressive model of order 1 is applied if model = "ar1" and Vector autoregressive model of order 2 is applied if method = "ar2".
time
Number of time points.
n.obs
Number of observations or replicates.
n.var
Number of variables.
prob0
Initial sparsity level.
network
Specifies the type of network structure. This could be random, scale-free, hub or user defined structures. Details on simultions from the various network structures can be found in the R package flare.
prec
Precision matrix.
gamma1
Autoregressive coefficients matrix at time lag 1.
gamma2
Autoregressive coefficients matrix at time lag 2.

Value

A list containing:
theta
Sparse precision matrix.
gamma
Sparse autoregressive coefficients matrix.
data1
Repeated multivariate time series data in longitudinal format.

Examples

Run this code
set.seed(321)
datas <- sim.data(model="ar1", time=4,n.obs=3, n.var=5,prob0=0.35,
         network="scale-free")
data.ts <-  datas$data1
prec_true <- datas$theta
autoR_true <- datas$gamma

Run the code above in your browser using DataLab