set.seed(321)
datas <- sim.data(model="ar1", time=10,n.obs=10, n.var=5,prob0=0.35,
network="scale-free")
data.fit <- datas$data1
prec_true <- datas$theta
autoR_true <- datas$gamma
res.tscgm <- sparse.tscgm(data=data.fit, lam1=NULL, lam2=NULL, nlambda=NULL,
model="ar1", optimality="bic_ext",control=list(maxit.out = 10, maxit.in = 100))
#Estimated sparse precision and autoregression matrices
prec <- res.tscgm$theta
autoR <- res.tscgm$gamma
#Optimal tuning parameter values
lambda1.opt <- res.tscgm$lam1.opt
lambda2.opt <- res.tscgm$lam2.opt
#Sparsity levels
sparsity_theta <- res.tscgm$s.theta
sparsity_gamma <- res.tscgm$s.gamma
#Graphical visualization
par(mfrow=c(2,2))
plot.tscgm(datas, mat="precision",main="True precision matrix")
plot.tscgm(res.tscgm, mat="precision",main="Estimated precision matrix")
plot.tscgm(datas, mat="autoregression",main="True autoregression coef. matrix")
plot.tscgm(res.tscgm, mat="autoregression",
main="Estimated autoregression coef. matrix")
Run the code above in your browser using DataLab