seed <- 321
datas <- sim.data(model="ar1", time=10, n.obs=10, n.var=5, seed=seed, prob0=0.35, network="random")
data.fit <- datas$data1
prec_true <- datas$theta
autoR_true <- datas$gamma
res.tscgm <- sparse.tscgm(data=data.fit, lam1=NULL, lam2=NULL, nlambda=NULL,
model="ar1", penalty="scad", optimality="bic_mod",
control=list(maxit.out=10, maxit.in=100))
# Estimated sparse precision and autoregression matrices
prec <- res.tscgm$theta
autoR <- res.tscgm$gamma
# Optimal tuning parameter values
lambda1.opt <- res.tscgm$lam1.opt
lambda2.opt <- res.tscgm$lam2.opt
# Sparsity levels
sparsity_theta <- res.tscgm$s.theta
sparsity_gamma <- res.tscgm$s.gamma
# Graphical visualization
oldpar <- par(mfrow=c(2,2))
plot.tscgm(datas, mat="precision", main="True precision matrix")
plot.tscgm(res.tscgm, mat="precision", main="Estimated precision matrix")
plot.tscgm(datas, mat="autoregression", main="True autoregression coef. matrix")
plot.tscgm(res.tscgm, mat="autoregression", main="Estimated autoregression coef. matrix")
par(oldpar)
Run the code above in your browser using DataLab