# \donttest{
# Create tiny dummy data:
# Coarse grid: 8x8 → Fine grid: 16x16
nx_c <- 8
ny_c <- 8
nx_f <- 16
ny_f <- 16
T <- 5 # number of time steps
# Coarse data:
coarse_data <- array(runif(nx_c * ny_c * T),
dim = c(nx_c, ny_c, T))
# Fine data:
fine_data <- array(runif(nx_f * ny_f * T),
dim = c(nx_f, ny_f, T))
# Optional time points
time_points <- 1:T
# Fit a tiny UNet (very small filters to keep the example fast)
model_obj <- unet(
coarse_data,
fine_data,
time_points = time_points,
filters = c(8, 16),
initial_filters = c(4),
epochs = 1,
batch_size = 4,
verbose = 0
)
T_new <- 3
newdata <- array(runif(nx_c * ny_c * T_new),
dim = c(nx_c, ny_c, T_new))
predictions <- predict(model_obj, newdata, 1:T_new)
# }
Run the code above in your browser using DataLab