##Define the coordinate of each location
n.site <- 30
locations <- matrix(runif(2*n.site, 0, 10), ncol = 2)
colnames(locations) <- c("lon", "lat")
##Simulate a max-stable process - with unit Frechet margins
data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 4, cov12 =
1, cov22 = 3)
##Now define the spatial model for the GEV parameters
param.loc <- -10 - 4 * locations[,1] + locations[,2]^2
param.scale <- 5 + locations[,1] + locations[,2]^2 / 10
param.shape <- rep(.2, n.site)
##Transform the unit Frechet margins to GEV
for (i in 1:n.site)
data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i],
param.shape[i])
##Define a model for the GEV margins to be fitted
##shape ~ 1 stands for the GEV shape parameter is constant
##over the region
loc.form <- loc ~ lon + I(lat^2)
scale.form <- scale ~ lon + I(lat^2)
shape.form <- shape ~ lat + lon
## 1- Fit a max-stable process
fitted <- fitmaxstab(data, locations, "gauss", loc.form, scale.form,
shape.form, std.err.type = "none")
condmap(fitted, c(1, 1), seq(0, 10, length = 25), seq(0,10, length =
25))Run the code above in your browser using DataLab