Usage
maxlik.cov.sp(X, y, coords, sp.type = "exponential",
range.par = stop("specify range.par argument"),
error.ratio = stop("specify error.ratio argument"),
smoothness = 0.5,
D = NULL, reml = TRUE, lower = NULL, upper = NULL,
control = list(TRACE = TRUE), optimizer="nlminb")
Arguments
X
A numeric matrix of size $n \times k$ containing the design matrix of the data locations.
y
A vector of length $n$ containing the observed responses.
coords
A numeric matrix of size $n \times d$ containing the locations of the observed responses.
sp.type
A character vector specifying the spatial covariance type. Valid types are currently exponential, gaussian, matern, and spherical.
range.par
An initial guess for the spatial dependence parameter.
error.ratio
A value non-negative value indicating the ratio error.var/sp.par[1]
.
smoothness
A positive number indicating the smoothness of the matern covariance function, if applicable.
D
The Euclidean distance matrix for the coords matrix. Must be of size $n \times n$.
reml
A boolean value indicating whether restricted maximum likelihood estimation should be used. Defaults to TRUE.
lower
A vector giving lower bounds for the covariance parameters sp.par[2]
, error.ratio
, and smoothness
(when the model is matern). Order matters! If not given defaults to an upper bound of Inf for sp.par[2]
upper
A vector giving upper bounds for the covariance parameters sp.par[2]
, error.ratio
, and smoothness
(when the model is matern). Order matters! If not given defaults to an upper bound of Inf for sp.par[2]
control
A list giving tuning parameters for the nlminb
function. See nlminb
for more details.
optimizer
A vector describing the optimization function to use for the optimization. Currently, only nlminb
is an acceptable value.