grid<- list( x= seq( 0,5,,100), y= seq(0,5,,100))
obj <- stationary.image.cov( grid=grid, V=cbind(c(0.25,0.15),c(0.45,0.75)), setup=TRUE)
look<- sim.rf(obj)
look2 <- sim.rf(obj)
look[look<0] <- 0
look2[look2<0] <- 0
q <- mean( c(c(look[look>0]),c(look2[look2>0])), na.rm=TRUE)
hold <- FeatureSuitePrep("look2", "look")
hold2 <- convthresh(hold, smoothpar=5, thresh=q)
if(!is.null(hold2$X.feats) & !is.null(hold2$Y.feats)) {
N <- max(c(length(hold2$X.feats), length(hold2$Y.feats)), na.rm=TRUE)
par(mfrow=c(1,2))
image.plot(hold2$X.labeled, col=c("grey", rainbow(N)), zlim=c(0,N))
image.plot(hold2$Y.labeled, col=c("grey", rainbow(N)), zlim=c(0,N))
saller(hold2, hold)
} # else try a lower threshold.
data(pert000)
data(pert004)
hold <- FeatureSuitePrep("pert004", "pert000")
look <- convthresh( hold, smoothpar=10.5)
par( mfrow=c(1,2))
zl <- range(c(c(look$X.labeled),c(look$Y.labeled)),finite=TRUE)
image.plot(look$X.labeled, zlim=zl)
image.plot(look$Y.labeled, zlim=zl)
look2 <- deltamm( look, verbose=TRUE)
image.plot(look2$X.labeled)
image.plot(look2$Y.labeled)
Run the code above in your browser using DataLab