Learn R Programming

SpatialVx (version 0.1-2)

spatbiasFS: Apply field significance method of Elmore et al. (2006)

Description

Apply field significance method of Elmore et al. (2006).

Usage

spatbiasFS(X, Y, loc = NULL, block.length = NULL, alpha.boot = 0.05, field.sig = 0.05, bootR = 1000, ntrials = 1000, verbose = FALSE)
## S3 method for class 'spatbiasFS':
summary(object, ...)
## S3 method for class 'spatbiasFS':
plot(x, ...)

Arguments

X,Y
m X n matrices giving the verification and forecast fields, resp., for each of m time points (rows) and n locations (columns).
x,object
list object as returned by spatbiasFS.
loc
optional (for subsequent plotting) n X 2 matrix giving the lon/lat coordinates for the locations.
block.length
numeric giving the block length to be used n the block bootstrap algorithm. If NULL, floor(sqrt(n)) is used.
alpha.boot
numeric between 0 and 1 giving the confidence level desired for the bootstrap algorithm.
field.sig
numeric between 0 and 1 giving the desired field significance level.
bootR
numeric integer giving the number of bootstrap replications to use.
ntrials
numeric integer giving the number of Monte Carol iterations to use.
verbose
logical, should progress information be printed to the screen?
...
not used.

Value

  • A list object with components:
  • Vx.name,Fcst.name,loc.namecharacter giving the name of the verification and forecast spatio-temporal fields used, and the associated location object.
  • block.boot.resultsobject of class LocSig
  • sig.resultslist object containing information about the significance of the results.
  • field.significance,alpha.bootfield significance level and bootstrap CI level as input by field.sig alpha.boot arguments.
  • bootR,ntrialssame as arguments above.

Details

See Elmore et al. (2006) for details.

References

Elmore, K. L., M. E. Baldwin, and D. M. Schultz, 2006: Field significance revisited: Spatial bias errors in forecasts as applied to the Eta model. Mon. Wea. Rev., 134, 519--531.

See Also

MCdof, LocSig, tsboot

Examples

Run this code
data(GFSNAMfcstEx)
data(GFSNAMobsEx)
data(GFSNAMlocEx)
id <- GFSNAMlocEx[,"Lon"] >=-100 & GFSNAMlocEx[,"Lon"] <= -75 & GFSNAMlocEx[,"Lat"] <= 36
loc <- GFSNAMlocEx[id,]
GFSobsSub <- GFSNAMobsEx[,id]
GFSfcstSub <- GFSNAMfcstEx[,id]
look <- spatbiasFS(GFSobsSub, GFSfcstSub, loc=loc, bootR=500, ntrials=500)
plot(look)
summary(look)

Run the code above in your browser using DataLab