grid<- list( x= seq( 0,5,,64), y= seq(0,5,,64))
obj<-Exp.image.cov( grid=grid, theta=.5, setup=TRUE)
look<- sim.rf( obj)
look[ look < 0] <- 0
look <- zapsmall( look)
look2 <- sim.rf( obj)
look2[ look2 < 0] <- 0
look2 <- zapsmall( look2)
res <- waverify2d(look, look2)
plot(res)
summary(res)
data(UKobs6)
data(UKfcst6)
look <- waverify2d(UKobs6, UKfcst6)
plot(look, which.plots="energy")
look2 <- mowaverify2d(UKobs6, UKfcst6, J=8)
plot(look2, which.plots="energy")
pdf("dyadicDWTex.pdf")
plot(look, main1="NIMROD Analysis", main2="NIMROD Forecast")
dev.off()
pdf("nondyadicMODWTex.pdf")
plot(look2, main1="NIMROD Analysis", main2="NIMROD Forecast")
dev.off()
data(pert000)
data(pert004)
look <- mowaverify(pert000, pert004, J=8, verbose=TRUE) # Slow, but does not require fields to be dyadic.
# Also can just do plot(look), but should print to a pdf file (e.g., using pdf()).
plot(look, which.plots="energy")
# Try one with some kind of climatology field. Here using surrogater2d function.
data(UKloc)
hold <- surrogater2d(UKobs6, n=1, maxiter=50, verbose=TRUE)
hold <- matrix(hold, 256, 256)
image(hold, col=c("grey",tim.colors(64)), axes=FALSE)
image.plot(UKloc, col=c("grey",tim.colors(64)), legend.only=TRUE, horizontal=TRUE)
look <- waverify2d(UKobs6, UKfcst6, hold)
pdf("waveletEx.pdf")
plot(look)
dev.off()
Run the code above in your browser using DataLab