pphindcast2d(object, which.score = "ets", time.point = 1, model =
1, levels = NULL, max.n = NULL, smooth.fun =
"hoods2dsmooth", smooth.params = NULL, verbose =
FALSE, ...)## S3 method for class 'pphindcast2d':
plot(x, ..., set.pw = FALSE,
type = c("quilt", "line"),
col = heat.colors(12), horizontal = FALSE)
## S3 method for class 'pphindcast2d':
print(x, ...)
make.SpatialVx
function.vxstats
.levels
argument.smooth.fun
. Use NULL if none.image
and image.plot
.pphindcast2d
: optional arguments to the optim
function. May not include lower, upper or method as these are hard coded into the function.plot
method function: optional arguments to the image
function.
hoods2d
), the method is a SO-NF approach that first compares the observed binary field (obtained from the trheshold(s) provided by object
), Ix, with the smoothed binary field, hoods2d
, kernel2dsmooth
, vxstats
, hoods2dPlot
, optim
x <- y <- matrix( 0, 50, 50)
x[ sample(1:50,10), sample(1:50,10)] <- rexp( 100, 0.25)
y[ sample(1:50,20), sample(1:50,20)] <- rexp( 400)
hold <- make.SpatialVx(x, y, thresholds=c(0.1, 0.5),
field.type="random")
look <- pphindcast2d(hold, levels=c(1, 3))
look
data(geom001)
data(geom000)
data(ICPg240Locs)
hold <- make.SpatialVx(geom000, geom001, thresholds=c(0.01,50.01),
loc=ICPg240Locs, projection=TRUE, map=TRUE,
data.name=c("Geometric", "geom000", "geom001"),
field.type="Precipitation", units="mm/h")
look <- pphindcast2d( hold, levels=c(1, 3, 65), verbose=TRUE)
plot(look, set.pw=TRUE)
plot(look, set.pw=TRUE, type="line")
# Alternatively:
par(mfrow=c(1,2))
hoods2dPlot( look$values, args=attributes(look),
main="Gilbert Skill Score")
Run the code above in your browser using DataLab