# NOT RUN {
grid<- list( x= seq( 0,5,,64), y= seq(0,5,,64))
obj<-Exp.image.cov( grid=grid, theta=.5, setup=TRUE)
look<- sim.rf( obj)
look[ look < 0] <- 0
look <- zapsmall( look)
look2 <- sim.rf( obj)
look2[ look2 < 0] <- 0
look2 <- zapsmall( look2)
res <- waverify2d(look, Y=look2)
plot(res)
summary(res)
# }
# NOT RUN {
data( "UKobs6" )
data( "UKfcst6" )
look <- waverify2d(UKobs6, Y=UKfcst6)
plot(look, which.plots="energy")
look2 <- mowaverify2d(UKobs6, UKfcst6, J=8)
plot(look2, which.plots="energy")
plot(look, main1="NIMROD Analysis", main2="NIMROD Forecast")
plot(look2, main1="NIMROD Analysis", main2="NIMROD Forecast")
# Alternative using "SpatialVx" object.
data( "UKloc" )
hold <- make.SpatialVx( UKobs6, UKfcst6, loc = UKloc,
map = TRUE, field.type = "Rainfall", units = "mm/h",
data.name = "Nimrod", obs.name = "Obs 6",
model.name = "Fcst 6" )
look <- waverify2d(hold)
plot(look, which.plots="details")
data( "pert000" )
data( "pert004" )
# The following is slow, but does not require fields to be dyadic.
look <- mowaverify2d(pert000, Y=pert004, J=8, verbose=TRUE)
# Also can just do plot(look), but should print to a pdf file (e.g., using pdf()).
plot(look, which.plots="energy")
# Using a "SpatialVx" object.
data( "ICPg240Locs" )
hold <- make.SpatialVx( pert000, pert004, loc = ICPg240Locs,
projection = TRUE, map = TRUE, loc.byrow = TRUE,
field.type = "Precipitation", units = "mm/h",
data.name = "ICP Perturbed Cases", obs.name = "pert000",
model.name = "pert004" )
look <- mowaverify2d( hold, verbose = TRUE )
plot(look, which.plots = "details")
# Try one with some kind of climatology field. Here using surrogater2d function.
hold <- surrogater2d(UKobs6, n=1, maxiter=50, verbose=TRUE)
hold <- matrix(hold, 256, 256)
image(hold, col=c("grey",tim.colors(64)), axes=FALSE)
image.plot(UKloc, col=c("grey",tim.colors(64)), legend.only=TRUE, horizontal=TRUE)
look <- waverify2d(UKobs6, Y=UKfcst6, Clim=hold)
plot(look)
# }
Run the code above in your browser using DataLab