
Last chance! 50% off unlimited learning
Sale ends in
mesa.data$trend
; for the residuals this plots either the raw
residuals or the (partial) autocorrelation function.plotMesaData(mesa.data, ID, add = FALSE, type = "obs",
lag.max = NULL)
mesa.data
or
mesa.data.model
.mesa.data$location$ID
or an integer; if an integer the functions will plot data from
ID=mesa.data.model$location$ID[ID]
.type="acf"
or
"pacf"
."obs"
, "res"
, "acf"
, and "pacf"
.acf
for details.ID
, or residuals from the regression of
observations on the smooth temporal trends in mesa.data$trend
. When plotting observations (type="obs"
) this plots both
observations and the best fit of the trend functions to the
observations. type="res"
plots the residuals of observations
fitted to the temporal trends; this also adds the y=0
line for
reference. type="acf"
or type="pacf"
plots the
autocorrelation function or partial autocorrelation function of the
residuals.
plotMonitoringLoc
, printMesaDataNbrObs
for additional data summaries.##load data
data(mesa.data)
##plot the first site,
par(mfrow=c(4,1),mar=c(2.5,2.5,3,1))
plotMesaData(mesa.data, ID=1, type="obs")
##residuals from the temporal trends,
plotMesaData(mesa.data, ID=1, type="res")
##afc
plotMesaData(mesa.data, ID=1, type="acf")
##... and pafc for the residuals
plotMesaData(mesa.data, ID=1, type="pacf")
##Same as above but calling the 2nd site by name
par(mfrow=c(4,1),mar=c(2.5,2.5,3,1))
plotMesaData(mesa.data, ID="60370016", type="obs")
plotMesaData(mesa.data, ID="60370016", type="res")
plotMesaData(mesa.data, ID="60370016", type="acf")
plotMesaData(mesa.data, ID="60370016", type="pacf")
Run the code above in your browser using DataLab