The dressing methods currently implemented and their required parameters are:"silverman" (default): No parameters are given. At time instance `n` each ensemble member is replaced by a Gaussian kernel with mean ens[n, k] and variance (4 / 3 / K)^0.4 * var(ens[n, ]). This method is called "Silverman's rule of thumb" and provides a simple non-parametric method for smoothing a discrete ensemble.
"akd": Affine Kernel Dressing. The required parameters are list(r1, r2, a, s1, s2). The `k`-th ensemble member at time instance `n` is dressed with a Gaussian kernel with mean r1 + r2 * mean(ens[n,]) + a * ens[n, k] and variance (4 / 3 / K)^0.4 * (s1 + s2 * a^2 * var(ens[n,])). Negative variances are set to zero. Note that parameters = list(r1=0, r2=0, a=1, s1=0, s2=1) yields the same dressed ensemble as dressing.method="silverman".
"akd.fit": Affine Kernel Dressing with fitted parameters. The required parameters is list(obs), where `obs` is a vector of observations which are used to optimize the parameters r1, r2, a, s1, s2 by CRPS minimization. See ?FitAkdParameters for more information.