Learn R Programming

SpherWave (version 1.2.0)

swd: Decomposition

Description

This function performs decomposition with multi-sale SBF's.

Usage

swd(sbf)

Arguments

sbf
an object of class `sbf'

Value

  • An object of class spherical wavelet decomposition(`swd'). This object is a list with the following components.
  • obsobservations
  • latlongrid points of observation sites in degree
  • netlabvector of labels representing sub-networks
  • etabandwidth parameters for Poisson kernel
  • methodextrapolation methods, `"ls"' or `"pls"'
  • approxif TRUE, approximation is used.
  • grid.sizegrid size (latitude, longitude) of extrapolation site
  • lambdasmoothing parameter for penalized least squares method
  • p0starting level for extrapolation. Resolution levels $p0+1, \ldots, L$ is used for extrapolation.
  • gridlonlongitudes of extrapolation sites in degree
  • gridlatlatitudes of extrapolation sites in degree
  • nlevelsthe number of multi-resolution levels
  • coeffinterpolation coefficients
  • fieldextrapolation on grid.size
  • density1density of SBF
  • latlimrange of latitudes in degree
  • lonlimrange of longitudes in degree
  • globalList of successively smoothed data
  • densitydensity of SW coefficients
  • detailList of details at different resolution levels
  • swcoeffSW coefficients
  • thresh.info`"None"'

Details

This function performs decomposition with multi-sale SBF's.

References

Oh, H-S. and Li, T-H. (2004) Estimation of global temperature fields from scattered observations by a spherical-wavelet-based spatially adaptive method. Journal of the Royal Statistical Society Ser. B, 66, 221--238.

See Also

sbf, swthresh, swr.

Examples

Run this code
### Observations of year 1967
#data(temperature)
#names(temperature)

# Temperatures on 939 weather stations of year 1967    
#temp67 <- temperature$obs[temperature$year == 1967] 
# Locations of 939 weather stations    
#latlon <- temperature$latlon[temperature$year == 1967, ]

### Network design by BUD
#data(netlab)

### Bandwidth for Poisson kernel
#eta <- c(0.961, 0.923, 0.852, 0.723, 0.506)

### SBF representation of the observations by pls
#out.pls <- sbf(obs=temp67, latlon=latlon, netlab=netlab, eta=eta, 
#    method="pls", grid.size=c(50, 100), lambda=0.89)

### Decomposition
#out.dpls <- swd(out.pls)

Run the code above in your browser using DataLab