# \donttest{
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/
(1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
mean(y.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
(1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)
mean(y.test)
# SplitGLM - CV (Multiple Groups)
split.out <- cv.SplitGLM(x.train, y.train,
glm_type="Logistic",
G=10, include_intercept=TRUE,
alpha_s=3/4, alpha_d=1,
n_lambda_sparsity=50, n_lambda_diversity=50,
tolerance=1e-3, max_iter=1e3,
n_folds=5,
active_set=FALSE,
n_threads=1)
# Plot of coefficients paths (function of Log-Lambda)
plot(split.out, plot_type="Coef", path_type="Log-Lambda", group_index=1, labels=FALSE)
# Plot of coefficients paths (function of L1-Norm)
plot(split.out, plot_type="Coef", path_type="L1-Norm", group_index=1, labels=FALSE)
# Plot of CV error
plot(split.out, plot_type="CV-Error")
# }
Run the code above in your browser using DataLab