# one sample, 50 observations, tested against pi = .5 by default
p_prop.test(50, prop=.65)
# return analysis model
p_prop.test(50, prop=.65, return_analysis = TRUE)
# specified using h and pi
h <- pwr::ES.h(.65, .4)
p_prop.test(50, h=h, pi=.4)
p_prop.test(50, h=-h, pi=.65)
# two-sample test
p_prop.test(50, prop=c(.5, .65))
# two-sample test, unequal ns
p_prop.test(50, prop=c(.5, .65), n.ratios = c(1,2))
# three-sample test, group2 twice as large as others
p_prop.test(50, prop=c(.5, .65, .7), n.ratios=c(1,2,1))
# Fisher exact test
p_prop.test(50, prop=matrix(c(.5, .65, .7, .5), 2, 2))
# \donttest{
# compare simulated results to pwr package
# one-sample tests
(h <- pwr::ES.h(0.5, 0.4))
pwr::pwr.p.test(h=h, n=60)
# uses binom.test (need to specify null location as this matters!)
Spower(p_prop.test(n=60, h=h, pi=.4))
Spower(p_prop.test(n=60, prop=.5, pi=.4))
# compare with switched null
Spower(p_prop.test(n=60, h=h, pi=.5))
Spower(p_prop.test(n=60, prop=.4, pi=.5))
# two-sample test, one-tailed
(h <- pwr::ES.h(0.67, 0.5))
pwr::pwr.2p.test(h=h, n=80, alternative="greater")
p_prop.test(n=80, prop=c(.67, .5), two.tailed=FALSE,
correct=FALSE) |> Spower()
# same as above, but with continuity correction (default)
p_prop.test(n=80, prop=c(.67, .5), two.tailed=FALSE) |>
Spower()
# three-sample joint test, equal n's
p_prop.test(n=50, prop=c(.6,.4,.7)) |> Spower()
# }
Run the code above in your browser using DataLab