# three group test where data generate from Gaussian distributions
p_kruskal.test(n=30, k=3, means=c(0, .5, .6))
# return analysis model
p_kruskal.test(n=30, k=3, means=c(0, .5, .6), return_analysis=TRUE)
# generate data from chi-squared distributions with different variances
gen_chisq <- function(n, k, n.ratios, means, dfs, ...){
dat <- vector('list', k)
ns <- n * n.ratios
for(g in 1:k)
dat[[g]] <- rchisq(ns[g], df=dfs[g]) - dfs[g] + means[g]
dat
}
p_kruskal.test(n=30, k=3, means=c(0, 1, 2),
gen_fun=gen_chisq, dfs=c(10, 15, 20))
# \donttest{
# empirical power estimate
p_kruskal.test(n=30, k=3, means=c(0, .5, .6)) |> Spower()
p_kruskal.test(n=30, k=3, means=c(0, 1, 2), gen_fun=gen_chisq,
dfs = c(10, 15, 20)) |> Spower()
# }
Run the code above in your browser using DataLab