Learn R Programming

Starr (version 1.28.0)

cmarrt.ma: Compute moving average statistics by incorporating the correlation structure

Description

This function extends the moving average approach by incorporating the correlation structure. It also outputs the p-values of the standardized moving average statistics under the Gaussian approximation.

Usage

cmarrt.ma(eSet, probeAnno, chr=NULL, M=NULL,frag.length,window.opt='fixed.probe')

Arguments

eSet
ExpressionSet containing the normalized ratio
probeAnno
probeAnno object with mapping
chr
which chromosome should be analysed? If chr==NULL, all chromosome in the probeAnno object are taken.
M
rough estimate of the percentage of bound probes. If unknown, leave it NULL.
frag.length
average fragment length from sonication.
window.opt
option for sliding window, either "fixed.probe" or "fixed.gen.dist". Default is 'fixed.probe'.

Value

data.sort
datafile sorted by genomic position.
ma
unstandardized moving average(MA) statistics.
z.cmarrt
standardized MA under correlation structure.
z.indep
standardized MA under independence (ignoring correlation structure).
pv.cmarrt
p-values of probes under correlation.
pv.indep
p-values of probes under independence (ignoring correlation structure).

Details

Computation using window.opt = "fixed.probe" calculates the moving average statistics within a fixed number of probes and is more efficient. Use this option if the tiling array is regular with approximately constant resolution. window.opt="fixed.gen.dist" computes the moving average statistics over a fixed genomic distance.

References

P.F. Kuan, H. Chun, S. Keles (2008). CMARRT: A tool for the analysiz of ChIP-chip data from tiling arrays by incorporating the correlation structure. Pacific Symposium of Biocomputing13:515-526.

See Also

plotcmarrt,cmarrt.peak

Examples

Run this code
# dataPath <- system.file("extdata", package="Starr")
# bpmapChr1 <- readBpmap(file.path(dataPath, "Scerevisiae_tlg_chr1.bpmap"))

# cels <- c(file.path(dataPath,"Rpb3_IP_chr1.cel"), file.path(dataPath,"wt_IP_chr1.cel"), 
# 	file.path(dataPath,"Rpb3_IP2_chr1.cel"))
# names <- c("rpb3_1", "wt_1","rpb3_2")
# type <- c("IP", "CONTROL", "IP")
# rpb3Chr1 <- readCelFile(bpmapChr1, cels, names, type, featureData=TRUE, log.it=TRUE)

# ips <- rpb3Chr1$type == "IP"
# controls <- rpb3Chr1$type == "CONTROL"

# rpb3_rankpercentile <- normalize.Probes(rpb3Chr1, method="rankpercentile")
# description <- c("Rpb3vsWT")
# rpb3_rankpercentile_ratio <- getRatio(rpb3_rankpercentile, ips, controls, description, fkt=median, featureData=FALSE)

# probeAnnoChr1 <- bpmapToProbeAnno(bpmapChr1)
# peaks <- cmarrt.ma(rpb3_rankpercentile_ratio, probeAnnoChr1, chr=NULL, M=NULL,250,window.opt='fixed.probe')

Run the code above in your browser using DataLab