Learn R Programming

StatDA (version 1.3)

plotuniout: Multivariate outlier plot for each dimension

Description

A multivariate outlier plot for each dimension is produced.

Usage

plotuniout(x, symb = FALSE, quan = 1/2, alpha = 0.025, bw = FALSE,
pch2 = c(3, 1), cex2 = c(0.7, 0.4), col2 = c(1, 1), lcex.fac = 1, ...)

Arguments

x
dataset
symb
if FALSE, only two different symbols (outlier and no outlier) will be used
quan
Number of subsets used for the robust estimation of the covariance matrix. Allowed are values between 0.5 and 1., see covMcd
alpha
Maximum thresholding proportion, see arw
bw
if TRUE, symbols are in gray-scale (only if symb=TRUE)
pch2, cex2, col2
graphical parameters for the points
lcex.fac
factor for multiplication of symbol size (only if symb=TRUE)
...
further graphical parameters for the plot

Value

  • oreturns the outliers
  • mdthe square root of the Mahalanobis distance
  • euclideanthe Euclidean distance of the scaled data

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

arw, covMcd

Examples

Run this code
data(moss)
el=c("Ag","As","Bi","Cd","Co","Cu","Ni")
dat=log10(moss[,el])

ans<-plotuniout(dat,symb=FALSE,cex2=c(0.9,0.1),pch2=c(3,21))

Run the code above in your browser using DataLab