Learn R Programming

StatDA (version 1.5)

KrigeLegend: Krige

Description

Plots Krige maps and Legend based on continuous or percentile scale.

Usage

KrigeLegend(X, Y, z, resol = 100, vario, type = "percentile",
whichcol = "gray", qutiles = c(0, 0.05, 0.25, 0.5, 0.75, 0.9, 0.95, 1),borders=NULL,
leg.xpos.min = 780000, leg.xpos.max = 8e+05, leg.ypos.min = 7760000,
leg.ypos.max = 7870000, leg.title = "mg/kg", leg.title.cex = 0.7,
leg.numb.cex = 0.7, leg.round = 2, leg.numb.xshift = 70000, leg.perc.xshift = 40000,
leg.perc.yshift = 20000, tit.xshift = 35000)

Arguments

X
X-coordinates
Y
Y-coordinates
z
values on the coordinates
resol
resolution of blocks for Kriging
vario
variogram model
type
"percentile" for percentile legend, "contin" for continous grey-scale or colour map
whichcol
type of colour scheme to use: "gray", "rainbow", "rainbow.trunc", "rainbow.inv", "terrain", "topo"
qutiles
considered quantiles if type="percentile" is used
borders
either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders
leg.xpos.min
minimum value of x-position of the legend
leg.xpos.max
maximum value of x-position of the legend
leg.ypos.min
minimum value of y-position of the legend
leg.ypos.max
maximum value of y-position of the legend
leg.title
title for legend
leg.title.cex
cex for legend title
leg.numb.cex
cex for legend number
leg.round
round legend to specified digits "pretty"
leg.numb.xshift
x-shift of numbers in legend relative to leg.xpos.max
leg.perc.xshift
x-shift of "Percentile" in legend relative to leg.xpos.min
leg.perc.yshift
y-shift of numbers in legend relative to leg.ypos.max
tit.xshift
x-shift of title in legend relative to leg.xpos.max

Details

Based on a variogram model a interpolation of the spatial data is computed. The variogram has to be provided by the user and based on this model the spatial prediction is made. To distinguish between different values every predicted value is plotted in his own scale of the choosen colour.

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

Run this code
data(chorizon)
data(kola.background)
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]
el=chorizon[,"As"]
vario.b <- variog(coords=cbind(X,Y), data=el, lambda=0, max.dist=300000)
data(res.eyefit.As_C_m) #need the data 
v5=variofit(vario.b,res.eyefit.As_C_m,cov.model="spherical",max.dist=300000)

plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n")

# to inclrease the resolution, set e.g. resol=100
data(bordersKola) # x and y coordinates of project boundary
KrigeLegend(X,Y,el,resol=25,vario=v5,type="percentile",whichcol="gray",
    qutiles=c(0,0.05,0.25,0.50,0.75,0.90,0.95,1),borders="bordersKola",
    leg.xpos.min=7.8e5,leg.xpos.max=8.0e5,leg.ypos.min=77.6e5,leg.ypos.max=78.7e5,
    leg.title="mg/kg", leg.title.cex=0.7, leg.numb.cex=0.7, leg.round=2,
    leg.numb.xshift=0.7e5,leg.perc.xshift=0.4e5,leg.perc.yshift=0.2e5,tit.xshift=0.35e5)

plotbg(map.col=c("gray","gray","gray","gray"),map.lwd=c(1,1,1,1),add.plot=TRUE)

Run the code above in your browser using DataLab