Learn R Programming

StatRank

Version 0.0.6 in development

Copy Link

Version

Install

install.packages('StatRank')

Monthly Downloads

320

Version

0.0.6

License

GPL (>= 2)

Last Published

September 9th, 2015

Functions in StatRank (0.0.6)

Estimation.Normal.GMM

GMM Method for Estimating Random Utility Model wih Normal dsitributions
Data.NascarTrimmed

Trimmed Nascar Data
PL.Pairwise.Prob

Pairwise Probability for PL Model
Estimation.RUM.Nonparametric

Nonparametric RUM Estimator
Normal.Pairwise.Prob

Pairwise Probability for Normal Model
Data.Election9

A9 Election Data
Breaking

Breaks full or partial orderings into pairwise comparisons
Estimation.PL.GMM

GMM Method for estimating Plackett-Luce model parameters
Evaluation.KL

Calculates KL divergence between empirical pairwise preferences and modeled pairwise preferences
Estimation.RUM.MLE

Performs parameter estimation for a Random Utility Model with different noise distributions
Data.Nascar

Nascar Data
Likelihood.Nonparametric

Calculate Likelihood for the nonparametric model
MSE

Calculates MSE between non-diagonal entries of two matrices if the diagonal elements are 0s
Data.Test

Tiny test dataset
Data.Election6

A6 Election Data
scramble

Scramble a vector
Evaluation.KendallTau

Calculates the Kendall Tau correlation between two ranks
Estimation.PL.MLE

Performs parameter estimation for the Plackett-Luce model using an Minorize Maximize algorithm
Data.Election1

A1 Election Data
Generate.RUM.Parameters

Parameter Generation for a RUM model
Estimation.GRUM.MLE

Performs parameter estimation for a Generalized Random Utility Model with user and alternative characteristics
Likelihood.Zemel

Gives Zemel pairwise Log-likelihood with data and scores
Likelihood.RUM.Multitype

Likelihood for Multitype Random Utility Models
Generate.Zemel.Parameters

Generates possible scores for a Zemel model
Estimation.RUM.MultiType.MLE

Performs parameter estimation for a Multitype Random Utility Model
Evaluation.MSE

Calculates MSE between empirical pairwise preferences and modeled pairwise preferences
Visualization.RUMplots

RUMplot visualization
Expo.MultiType.Pairwise.Prob

Pairwise Probability for PL Multitype Model
Evaluation.AveragePrecision

Calculates the Average Precision
Generate.Zemel.Ranks.Pairs

Generates pairwise ranks from a Zemel model given a set of scores
Evaluation.Precision.at.k

Calculates the Average Precision at k
generateC

Generate a matrix of pairwise wins
Likelihood.PL

A faster Likelihood for Plackett-Luce Model
KL

Calculates KL Divergence between non-diagonal entries of two matrices
Generate.RUM.Data

Generate observation of ranks given parameters
TVD

Calculates TVD between two matrices
Visualization.Empirical

RPD Visualization
turn_matrix_into_table

Converts a matrix into a table
Estimation.Zemel.MLE

Estimates Zemel Parameters via Gradient Descent
convert.vector.to.list

Helper function for the graphing interface
Evaluation.LocationofWinner

Calculates the location of the True winner in the estimated ranking
Generate.NPRUM.Data

Generate data from an NPRUM model
Evaluation.NDCG

Calculates the Normalized Discounted Cumluative Gain
generateC.model.Nonparametric

Generate pairwise matrix for an NPRUM model
Likelihood.RUM

Likelihood for general Random Utility Models
scores.to.order

Converts scores to a ranking
Visualization.Pairwise.Probabilities

Creates pairwise matrices to compare inference results with the empirical pairwise probabilities
Zemel.Pairwise.Prob

Pairwise Probability for Zemel
Visualization.MultiType

Multitype Random Utility visualizer
Normal.MultiType.Pairwise.Prob

Pairwise Probability for Normal Multitype Model
generateC.model

Turns inference object into modeled C matrix.
Evaluation.TVD

Calculates TVD between empirical pairwise preferences and modeled pairwise preferences