# NOT RUN {
set.seed(4)
dfY <- data.frame(matrix(c(rnorm(20,0,2),c(rep(1,10),rep(2,10)),rnorm(20,2,3)),20,3))
colnames(dfY) <- paste("Y",1:3,sep="")
dfX <- data.frame(matrix(c(rnorm(100,0,2),rnorm(100,2,1)),20,10))
colnames(dfX) <- paste("X",1:10,sep="")
yx <- cbind(dfY,dfX)
#for univariate regression
y <- c("Y1")
notX <- c("Y3")
#for multivariate regression you can use this
ym <- c("Y1","Y3")
notXm <- NULL
#* with continuous variable nested in class effect
ClassY2 <- c("Y2")
#* without continuous variable nested in class effect
Class0 <- NULL
# without forced effect in regression model
inc0 <- NULL
# force the 'Y2' into the regression model
incY2 <- c("Y2")
sele <- 'stepwise'
tol <- 1e-7
Trace <- "Pillai"
sle <- 0.15
sls <- 0.15
# weights vector
w0 <- c(rep(0.5,2),rep(1,18))
w2 <- c(rep(0.5,3),rep(1,14),0.5,1,0.5)
#univariate regression for 'SBC' select and 'AIC' choose
#without forced effect and continuous variable nested in class effect
stepwise(yx, y, notX, inc0, Class0, w0, sele, "SBC", sle, sls, tol, Trace, 'AIC')
#univariate regression for 'AICc' select and 'HQc' choose
#with forced effect and continuous variable nested in class effect
stepwise(yx, y, notX, incY2, ClassY2, w2, sele, 'AICc', sle, sls, tol, Trace, 'HQc')
#multivariate regression for 'HQ' select and 'BIC' choose
#with forced effect and continuous variable nested in class effect
stepwise(yx, ym, notXm, incY2, ClassY2, w2, sele, 'HQ', sle, sls, tol, Trace, 'BIC')
# }
Run the code above in your browser using DataLab