Last chance! 50% off unlimited learning
Sale ends in
Uses the elastic net (glmnet R package) to obtain patient-level estimates. Usable for continuous, binary, or survival outcomes.
ple_glmnet(Y, A, X, Xtest, lambda = "lambda.min", family, ...)
The outcome variable. Must be numeric or survival (ex; Surv(time,cens) )
Treatment variable. (a=1,...A)
Covariate space.
Test set
Lambda for elastic-net (default = "lambda.min"). Other options include "lambda.1se" or fixed values
Outcome type ("gaussian", "binomial", "survival"), default is "gaussian"
Any additional parameters, not currently passed through.
Trained glmnet model(s).
mod - trained model(s)
lambda - Lambda used for elastic-net (passes to prediction function)
X - Covariate Space (in model matrix form)
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent, https://web.stanford.edu/~hastie/Papers/glmnet.pdf Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010 Vol. 33(1), 1-22 Feb 2010.
# NOT RUN {
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A
mod1 = ple_glmnet(Y, A, X, Xtest=X, family="gaussian")
# }
Run the code above in your browser using DataLab