Partial dependence plots: Single Variable (marginal effect) or heat map (2 to 3 variables).
plot_dependence(object, vars, grid.data = NULL, grid.thres = ">0",
estimand = NULL, ...)
Fitted PRISM object
Variables to visualize (ex: c("var1", "var2", "var3)). If no grid.data provided, defaults to using seq(min(var), max(var)) for each continuous variables. For categorical, uses all categories.
Input grid of values for 2-3 covariates (if 3, last variable cannot be continuous). This is required for type="heatmap". Default=NULL.
Threshold for PLE, ex: I(PLE>thres). Used to estimate P(PLE>thres) for type="heatmap". Default is ">0". Direction can be reversed and can include equality sign (ex: "<=").
Estimand for which to generate dependendence or heat map plots.
Additional arguments (currently ignored).
Plot (ggplot2) object
Friedman, J. Greedy function approximation: A gradient boosting machine. Annals of statistics (2001): 1189-1232
Zhao, Qingyuan, and Trevor Hastie. Causal interpretations of black-box models. Journal of Business & Economic Statistics, to appear. (2017).