#-------------------------------------------------------------
## Linear Model and results discussed in Article 1.2.1 after Table1.1
#-------------------------------------------------------------
data(DataSet3.1)
DataSet3.1$trt <- factor(x = DataSet3.1$trt)
Exam3.2.glm <- glm(formula = F/N~trt, family = quasibinomial(link = "logit"), data = DataSet3.1)
summary(Exam3.2.glm)
library(parameters)
model_parameters(Exam3.2.glm)
#-------------------------------------------------------------
## Individula least squares treatment means
#-------------------------------------------------------------
library(emmeans)
emmeans(object = Exam3.2.glm, specs = "trt")
emmeans(object = Exam3.2.glm, specs = "trt", type = "response")
#---------------------------------------------------
## Over all mean
#---------------------------------------------------
library(phia)
list3.2 <- list(trt = c("0" = 0.5, "1" = 0.5 ))
testFactors(model = Exam3.2.glm, levels = list3.2 )
#---------------------------------------------------
## Repairwise treatment means estimate
#---------------------------------------------------
contrast(emmeans(object = Exam3.2.glm, specs = "trt"))
contrast(emmeans(object = Exam3.2.glm, specs = "trt", type = "response"))
Run the code above in your browser using DataLab