#-----------------------------------------------------------------------------------
## Binomial conditional GLMM without interaction, logit link
#-----------------------------------------------------------------------------------
library(MASS)
DataSet3.2$trt <- factor( x = DataSet3.2$trt )
DataSet3.2$loc <- factor( x = DataSet3.2$loc )
Exam3.9.fm1 <-
glmmPQL(
fixed = S2/Nbin~trt
, random = ~1|loc
, family = quasibinomial(link = "logit")
, data = DataSet3.2
, niter = 10
, verbose = TRUE
)
summary(Exam3.9.fm1)
library(parameters)
model_parameters(Exam3.9.fm1)
#-------------------------------------------------------------
## treatment means
#-------------------------------------------------------------
library(emmeans)
emmeans(object = Exam3.9.fm1, specs = ~trt, type = "response")
emmeans(object = Exam3.9.fm1, specs = ~trt, type = "link")
emmeans(object = Exam3.9.fm1, specs = ~trt, type = "logit")
##--- Normal Approximation
library(nlme)
Exam3.9fm2 <-
lme(
fixed = S2/Nbin~trt
, data = DataSet3.2
, random = ~1|loc
, method = c("REML", "ML")[1]
)
Exam3.9fm2
model_parameters(Exam3.9fm2)
emmeans(object = Exam3.9fm2, specs = ~trt)
##---Binomial GLMM with interaction
Exam3.9fm3 <-
glmmPQL(
fixed = S2/Nbin~trt
, random = ~1|trt/loc
, family = quasibinomial(link = "logit")
, data = DataSet3.2
, niter = 10
, verbose = TRUE
)
summary(Exam3.9fm3)
model_parameters(Exam3.9fm3)
emmeans(object = Exam3.9fm3, specs = ~trt)
##---Binomial Marginal GLMM(assuming compound symmetry)
Exam3.9fm4 <-
glmmPQL(
fixed = S2/Nbin~trt
, random = ~1|loc
, family = quasibinomial(link = "logit")
, data = DataSet3.2
, correlation = corCompSymm(form = ~1|loc)
, niter = 10
, verbose = TRUE
)
summary(Exam3.9fm4)
model_parameters(Exam3.9fm4)
emmeans(object = Exam3.9fm4, specs = ~trt)
Run the code above in your browser using DataLab