# NOT RUN {
library(survival)
library(glmnet)
library(SuRF.vs)
N=100;p=200
nzc=p/3
X=matrix(rnorm(N*p),N,p)
beta=rnorm(nzc)
fx=X[,seq(nzc)]%*%beta/3
hx=exp(fx)
ty=rexp(N,hx)
tcens=rbinom(n=N,prob=.3,size=1)# censoring indicator (1 or 0)
Xo=NULL
B=20
Alpha=1
fold=5
ncores=1
prop=0.1
C=3
alpha_u=0.2
alpha=seq(0.01,0.1,len=20)
#binomial model
XX=X[,1:2]
f=1+XX%*%c(2,1.5)
p=exp(f)/(1+exp(f))
y=rbinom(100,1,p)
weights=FALSE
family=stats::binomial(link="logit")
# }
# NOT RUN {
surf_binary=SURF(Xo=X,y=y,fold=5,weights=weights,B=10,C=5,family=family,alpha_u=0.1,alpha=alpha)
# }
# NOT RUN {
#linear regression
y=1+XX%*%c(0.1,0.2)
family=stats::gaussian(link="identity")
# }
# NOT RUN {
surf_lm=SURF(Xo=X,y=y,fold=5,weights=weights,B=10,C=5,family=family,alpha_u=0.1,alpha=alpha)
# }
# NOT RUN {
#cox proportional model
y=cbind(time=ty,status=1-tcens)
weights=rep(1,100)
rseed=floor(runif(20,1,100))
weights[rseed]=2
family=list(family="cox")
# }
# NOT RUN {
surf_cox=SURF(Xo=X,y=y,fold=5,weights=weights,B=10,C=5,family=family,alpha_u=alpha_u,alpha=alpha)
# }
Run the code above in your browser using DataLab