Learn R Programming

SubTS (version 1.0)

rPGamma: Simulation from p-gamma distributions.

Description

Simulates from p-gamma distributions. These are p-RDTS distributions with alpha=0.

Usage

rPGamma(n, t, mu, p, step = 1)

Value

Returns a vector of n random numbers.

Arguments

n

Number of observations.

t

Parameter >0.

mu

Parameter >0.

p

Parameter >1.

step

Tuning parameter. The larger the step, the slower the rejection sampling, but the fewer the number of terms. See Hoefert (2011) or Section 4 in Grabchak (2019).

Author

Michael Grabchak and Lijuan Cao

Details

Uses Theorem 1 in Grabchak (2021) to simulate from a p-Gamma distribution. This distribution has Laplace transform

L(z) = exp( t int_0^infty (e^(-xz)-1)e^(-(mu*x)^p) x^(-1) dx ), z>0

and Levy measure

M(dx) = t e^(-(mu*x)^p) x^(-1) 1(x>0)dx.

References

M. Grabchak (2019). Rejection sampling for tempered Levy processes. Statistics and Computing, 29(3):549-558

M. Grabchak (2021). An exact method for simulating rapidly decreasing tempered stable distributions. Statistics and Probability Letters, 170: Article 109015.

M. Hofert (2011). Sampling exponentially tilted stable distributions. ACM Transactions on Modeling and Computer Simulation, 22(1), 3.

Examples

Run this code
rPGamma(20, 2, 2, 2)

Run the code above in your browser using DataLab