Learn R Programming

SubTS (version 1.0)

rPRDTS: Simulation from p-RDTS distributions.

Description

Simulates from p-rapidly decreasing tempered stable (p-RDTS) distributions.

Usage

rPRDTS(n, t, mu, alpha, p, step = 1)

Value

Returns a vector of n random numbers.

Arguments

n

Number of observations.

t

Parameter >0.

mu

Parameter >0.

alpha

Parameter in (-infty,1)

p

Parameter >1 if 0<=alpha<1, >0 if alpha<0.

step

Tuning parameter. The larger the step, the slower the rejection sampling, but the fewer the number of terms. See Hoefert (2011) or Section 4 in Grabchak (2019).

Author

Michael Grabchak and Lijuan Cao

Details

Simulates from a p-RDTS distribution. When alpha >=0, uses Theorem 1 in Grabchak (2021) and when alpha<0 uses the method in Section 4 of Grabchak (2021). This distribution has Laplace transform

L(z) = exp( t int_0^infty (e^(-xz)-1)e^(-(mu*x)^p) x^(-1-alpha) dx ), z>0

and Levy measure

M(dx) = t e^(-(mu*x)^p) x^(-1-alpha) 1(x>0)dx.

References

M. Grabchak (2019). Rejection sampling for tempered Levy processes. Statistics and Computing, 29(3):549-558

M. Grabchak (2021). An exact method for simulating rapidly decreasing tempered stable distributions. Statistics and Probability Letters, 170: Article 109015.

M. Hofert (2011). Sampling exponentially tilted stable distributions. ACM Transactions on Modeling and Computer Simulation, 22(1), 3.

Examples

Run this code
rPRDTS(20, 2, 1, .7, 2)
rPRDTS(20, 2, 1, 0, 2)
rPRDTS(20, 2, 1, -.7, 2)

Run the code above in your browser using DataLab