Learn R Programming

SubTS (version 1.0)

rTrunGamma: Simulation from the truncated gamma distribution

Description

Simulates from the truncated gamma distribution.

Usage

rTrunGamma(n, t, mu, b = 1, step = 1)

Value

Returns a vector of n random numbers.

Arguments

n

Number of observations.

t

Parameter > 0.

mu

Parameter > 0.

b

Parameter > 0.

step

Tuning parameter. The larger the step, the slower the rejection sampling, but the fewer the number of terms. See Hoefert (2011) or Section 4 in Grabchak (2019).

Author

Michael Grabchak and Lijuan Cao

Details

Simulates from the truncated gamma distribution. This distribution has Laplace transform

L(z) = exp( t int_0^b (e^(-xz)-1) x^(-1)e^(-mu*x) dx), z>0

and Levy measure

M(dx) = t x^(-1) e^(-mu*x) 1(0<x<b) dx.

The simulation is performed by applying rejection sampling (Algorithm 4.4 in Dassios, Qu, Lim (2020)) to the generalized Dickman distribution. We simulate from the latter using Algorithm 3.1 in Dassios, Qu, Lim (2019).

References

A. Dassios, Y. Qu, J.W. Lim (2019). Exact simulation of generalised Vervaat perpetuities. Journal of Applied Probability, 56(1):57-75.

A. Dassios, Y. Qu, J.W. Lim (2020). Exact simulation of a truncated Levy subordinator. ACM Transactions on Modeling and Computer Simulation, 30(10), 17.

M. Grabchak (2019). Rejection sampling for tempered Levy processes. Statistics and Computing, 29(3):549-558

M. Hofert (2011). Sampling exponentially tilted stable distributions. ACM Transactions on Modeling and Computer Simulation, 22(1), 3.

Examples

Run this code
rTrunGamma(10, 2, 1)

Run the code above in your browser using DataLab