Learn R Programming

SubTS (version 1.0)

rTrunTS: Simulation from the truncated tempered stable distribution.

Description

Simulates from the truncated tempered stable distribution.

Usage

rTrunTS(n, t, mu, alpha, b = 1, step = 1)

Value

Returns a vector of n random numbers.

Arguments

n

Number of observations.

t

Parameter > 0.

mu

Parameter > 0.

alpha

Parameter in the open interval (0,1).

b

Parameter > 0.

step

Tuning parameter. The larger the step, the slower the rejection sampling, but the fewer the number of terms. See Hoefert (2011) or Section 4 in Grabchak (2019).

Author

Michael Grabchak and Lijuan Cao

Details

Simulates from the truncated stable distribution using Algorithm 4.3 in Dassios, Qu, and Lim (2020). This distribution has Laplace transform

L(z) = exp( t * (alpha/Gamma(1-alpha)) * int_0^b (e^(-xz)-1) x^(-1-alpha) e^(-mu*x) dx), z>0

and Levy measure

M(dx) = t * (alpha/Gamma(1-alpha)) * x^(-1-alpha) e^(-mu*x) 1(0<x<b) dx.

Here Gamma() is the gamma function.

References

A. Dassios, Y. Qu, J.W. Lim (2020). Exact simulation of a truncated Levy subordinator. ACM Transactions on Modeling and Computer Simulation, 30(10), 17.

M. Grabchak (2019). Rejection sampling for tempered Levy processes. Statistics and Computing, 29(3):549-558

M. Hofert (2011). Sampling exponentially tilted stable distributions. ACM Transactions on Modeling and Computer Simulation, 22(1), 3.

Examples

Run this code
rTrunTS(10, 2, 2, .6)

Run the code above in your browser using DataLab