## Not run:
# data(toydata,package='Sunder')
#
# #### Computing options
# nit <- 10^2
# run <- c(1,1,1)
# thinning <- 1 # max(nit/10^3,1);
# ud <- c(0,1,1,0,0)
# theta.init <- c(1,2,1,1,0.01)
# n.validation.set <- dim(gen)[1]*dim(gen)[2]/10
# theta.max <- c(10,10*max(D_G),10*max(D_E),1,0.01)
#
# plot <- TRUE
# trace <- FALSE
#
# #### Call Sunder ####
# output <- MCMCCV(gen,D_G,D_E,
# nit,thinning,
# theta.max,
# theta.init,
# run,ud,n.validation.set)
#
# mod.lik <- output$mod.lik
# tvt <- output$theta
#
#
# ## plotting outputs
# upd=matrix(nrow=sum(run), ncol=length(theta.init), data=1)
# upd[2,3]=upd[3,2]=0
#
# plot(as.vector(D_G),as.vector(cor(t(gen[,,1]))),
# bg=colorRampPalette(c("blue", "red"))(dim(D_E)[1]^2)[order(order(as.vector(D_E)))],
# pch=21,
# xlab='Geographic distance',
# ylab='Empirical covariance genotypes')
#
#
# kol=c(4,2,3)
# xseq=seq(thinning,nit,thinning)
# ylab=c(expression(paste(alpha)),
# expression(paste(beta[D])),
# expression(paste(beta[E])),
# expression(paste(gamma)),
# expression(paste(delta)))
#
# par(mfrow=c(sum(run),length(theta.init)))
# for (j in 1:sum(run))
# {
# for(k in 1:length(theta.init))
# {
# if (sum(upd[,k]==1)>0)
# {
# if(upd[j, k]==1)
# {
# if(exists("theta"))
# ylim=c(min(tvt[k,,j],theta[k]),max(tvt[k,,j],theta[k])) else
# ylim=c(min(tvt[k,,j]),max(tvt[k,,j]))
# plot(0, type="n",xlab="",ylab="", xlim=c(0,nit), ylim=ylim)
# lines(xseq,tvt[k,,j],col=kol[j],xlab="",ylab="")
# if(exists("theta")) abline(h=theta[k],lty=2)
# title(xlab="iterations")
# mtext(ylab[k], side=2, line=2.3,las=1)} else plot.new()
# }
# }
# }
#
# print(mod.lik)
# print(paste('The model achieving the highest likelihood on the validation set is:',
# names(mod.lik)[order(mod.lik,decreasing=TRUE)[1]]))
# theta.GE <- apply(output$theta[,,1],1,mean)
# print('Posterior mean theta under model G+E:')
# print(theta.GE)
#
# theta.G <- apply(output$theta[,,2],1,mean)
# theta.G[3] <- NA
# print('Posterior mean theta under model G:')
# print(theta.G)
#
# theta.E <- apply(output$theta[,,3],1,mean)
# theta.E[2] <- NA
# print('Posterior mean theta under model E:')
# print(theta.E)
#
# ## End(Not run)
Run the code above in your browser using DataLab